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ABSTRACT 

Let h be a homeomorphic bijection between hyperbolic Riemann surfaces 

R and R'.  If there is a conformal mapping of R into R' homotopic to 

h, then for any hyperbolic geodesic c on R the length of the hyperbolic 

geodesic freely homotopic to the image h(c) is less than or equal to the 

hyperbolic length of c. We show that the converse is not necessarily true. 

1. I n t r o d u c t i o n  

Let R and R ~ be noncompact Riemann surfaces. Suppose that  they are homeo- 

morphic to each other, and fix a homeomorphism h of R onto R'. Then we are 

interested in the condition that 

[C] there exists a conformal mapping of R into R' which is homotopic to h. 

Here, by a conformal mapping we mean a holomorphic injection; it is not neces- 

sarily surjective. 

We look for conditions which imply or are implied by condition [C]. First we 

give an elementary condition necessary for [C] in terms of hyperbolic lengths, 

and then ask whether it is also sufficient for [C] or not. 

In general, let S[W] be the set of free homotopy classes of closed curves on a 

Riemann surface W. If W is hyperbolic (that is, the universal covering surface 

of W is conformally equivalent to the unit disk If)), then for c E S[W] we denote 
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by lw (c) the infimum of the hyperbolic lengths of curves in the homotopy class 

c, where the hyperbolic metric is normalized to have curvature -1 .  We simply 

call Iw(c) the hyperbolic length of c. 

Now, the homeomorphism h: R --4 R ~ induces a bijection h, of S[R] onto 

S[R']. If R and R' are hyperbolic and condition [C] is valid, then h, decreases 

the hyperbolic lengths: 

[HI 1R,(h,(c)) < IR(c) for a11 c e S[R]. 

Thus condition [C] implies condition [HI. If R and R' are planar and doubly 

connected, then the converse is also true. In this paper we show that in general 

this is not always the case. 

To state our main result we need one more definition. A boundary component 

p of W is called border - l ike  if there is a doubly connected planar subdomain D 

of W of finite modulus such that DU{p} is a neighborhood ofp in the Ker~kjdrt6- 

Sto~low compactification of W. (See Ahlfors-Sario [2, 1.36] for the definitions of 

a boundary component and the Ker~kjs compactification.) If W is a 

subdomain of a compact Riemann surface l~, then W has a border-like boundary 

component if and only if W \ W has a connected component which contains more 

than one point and which is isolated from the other components. 

THEOREM 1.1 : Let R be a noncompact Riemann surface of positive finite genus. 

Assume that R has a border-like boundary component. Then there is a Riemann 

surface R ~ together with a homeomorphism h of R onto R ~ such that [H] is valid 

while [C] is not. 

This is a generalization of our previous result [11, Theorem 5.2], where we 

treated the case of a toms with a hole. 

For the sake of comparison we discuss another elementary condition similar 

to [H]. For c E S[W] let AT(c) denote the extremal length of the curve family c. 

If condition [C] holds, then h, also decreases the extremal lengths: 

[E] AR,(h,(c)) <_ AR(c) for a11 c E $[R]. 

Hence [E] is another necessary condition for [C]. Of course, for doubly con- 

nected planar Riemann surfaces other than the punctured plane, [E] is also suffi- 

cient for [C]. We know a less trivial case where condition [E] is sufficient for [C]: 

THEOREM 1.2 ([11, Theorem 5.1]): I f  R and R' are homeomorphic to a once- 

punctured torus, then for any homeomorphism h of R onto R ~ condition [E] 

implies condition [C]. 
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Thus in the space of Riemann surfaces homeomorphic to a once-punctured 

torus, condition [E] is necessary and sufficient for condition [C] while [H] is only 

a necessary, not sufficient, condition for [C]. It is not known whether Theorem 1.2 

is still valid for more general classes of Riemann surfaces. 

In w we review the results of Shiba [18], who investigated the space M(R, X) 
of compact continuations of a marked noncompact Riemann surface (R, X) of 

positive finite genus g. His results give us necessary conditions for [C] in terms 

of period matrices. In w we introduce the space 9Yt(R, X) of marked compact 

Riemann surfaces of genus g into which there is a holomorphic mapping of (R, X) 

homotopic to a homeomorphic injection. We then show that M(R, X) is a proper 

subset of ffJI(R, X) if R has a border-like boundary component. The proof of 

Theorem 1.1 finishes in w A Riemann surface R' possessing the properties 

in the theorem is obtained as a subdomain of a compact Riemann surface in 

9R(R, X) \ M(R,  X). 

2. Compact  continuations of a noncompact Riemann surface 

We begin with the definition of a marking of a Riemann surface R of positive 

finite genus g. First suppose that R is compact. As is well known, a canonical dis- 

section of R gives rise to an ordered set X -'- {al, b l , . . . ,  ag, bg} of elements of the 

fundamental group 7h(R,p) with base point at p E R such that al,  b l , . . - ,  ag, bg 

generate 7rl (R, p) with the single defining relation 

g 

H(ajbja-~lb; 1) --= 1. 
j : l  

Such an ordered set X is called a m a r k i n g  of R with base point at p. 

Next, if R is noncompact, then it is homeomorphically embedded into a com- 

pact Riemann surface/} of the same genus. A homeomorphism h of R into/~ 

induces a homomorphism s rl(R,p) -+ rl(/~, h(p)) for any p e R. We then say 

that an ordered set X = {al, bl , . . . ,  ag, bg} of elements of 7h(R,p) is a m a r k i n g  

of R if 

h,(x) = {h,(al) ,  h,(bi), . . . ,  h , (%),  h,(bg)} 

is a marking of/~. This definition does not depend on a particular choice of/~ 

or h. Note that  X is not a set of generators of the fundamental group of R unless 

R has exactly one boundary component. 

Now, let R be an arbitrary (compact or noncompact) Riemann surface of genus 

g. Every curve c joining p to p~ on R induces an isomorphism we of 7rl (R, p) onto 
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7rl(R,p') in a well-known manner. Let X = {aj,bj}j=lg and X' = {aj,' b'j}j= 1 '  ~ be 

two markings of R with base points at p and p', respectively. If there exists a 

' andwc(b j )=  ' f o r j = l ,  then curve c from p to p' such that Wc(aj)  = aj bj . . . ,  g, 
we say that  the markings X and X' are equivalent to each other. 

A m a r k e d  R i e m a n n  surface  of genus g is a pair (R, X), where R is a Riemann 

surface of genus g and X is a marking of R. Let (R', X') be another marked 

Riemann surface of the same genus. Every continuous mapping f of R into 

R' induces a homomorphism f . :  ~rl(R,p) --4 ~rl(R',f(p)) for any p E R. If 

f , ( x )  is a marking of R' equivalent to X', then we say that f is a continuous 

mapping of (R, X) into (R', X') and use the notation f :  (R, X) ~ (R', X'). If, 

in addition, f is holomorphic (resp. conformal, injective, etc.), then we say that 

f :  (R, X) --+ (R', X') is holomorphic (resp. conformal, injective, etc.). If there 

exists a conformal bijection of (R, X) onto (R', X'), then these marked Riemann 

surfaces are said to be conformally equivalent to each other. The conformal 

equivalence class of (R, X) is denoted by [R, X]. Also, if R is a subdomain of 

R' and the marking of R' induced by X in the natural way is equivalent to X', 

then we write (R, X) C (R', X'). In this case the inclusion mapping R ~ R' is a 

conformal mapping of (R, X) into (R', X'). 

The TeichmiiUer  space Tg of genus g is the set of conformal equivalence 

classes of marked compact Riemann surfaces of genus g. It is a complex manifold 

of dimension 3g - 3 if g > 1 and of dimension 1 if g = 1. For [/~, )~] C T~ with 

2 {aj,- = bj}j= 1 we set 

= / j  j,k = 1,... ,g, 

where 95k's are the unique holomorphic differentials on/~ such that fa~ ~5k = ~jk 

for j, k = 1 , . . . , g .  Here ~jk stands for the Kronecker delta. The g x g matrix 

H[/~,)~] := (rjk[/~,)~]) is called the no rma l i zed  pe r iod  m a t r i x  of [/~,;~]. It 

belongs to the Siegel upper half space | that is, H[/~, :~] is a symmetric g • g 

matrix with positive definite imaginary part. Moreover, II: [/~, ;~] ~+ H[/~, ;~] is a 

holomorphic mapping of Tg into Gg. In particular, the diagonal entries 7rkk are 

holomorphic mappings of T a into the upper half plane H. 

M. Shiba has been studying the space of conformal embeddings of a noncom- 

pact Riemann surface of finite genus into compact Riemann surfaces of the same 

genus. In the rest of this section we summarize some of his results. For the proofs 

we refer to [18]. Though he considered pairs of Riemann surfaces and canonical 

homology bases, it is easy to verify our version of his results. 

For a marked noncompact Riemann surface (R, X) of genus g we denote by 
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M(R, X) the set of points [/~, )~] of Tg for which (R, X) can be conformally em- 

bedded into (/~,)~). Shiba investigated the behavior of II in M(R,  X). 

PROPOSITION 2.1: For each k = 1 , . . . ,g  the image 7rkk(M(R,x) ) of M ( R , x )  
under the mapping 7rkk is a closed disk or a point in H. 

Shiba first showed in [18] that there is a closed disk Ak C H such that 

OAk C 7rk~(M(R,x)) C Ak, and then, in a joint work with Schmieder (see 

[16, Theorem 3]), he showed that 7rkk(M(R,x)) = Ak for R of topologically 

finite type. The general result has been established in [12, Theorem 10.1]. For 

the proof of Theorem 1.1, however, the weaker version [18] is sufficient. 

PROPOSITION 2.2: If R E OAD, then 7rkk(M(R, X)) degenerates to a point for 

all k. Conversely, if Trkk(M(R, X)) is a singleton for some k, then R E OAD. 

Consequently, if R has a border-like boundary component, then R does not 

belong to OAD and so 7rkk(M(R, X)) is a closed disk of positive radius for any k. 

Shiba introduced the notion of canonical hydrodynamic continuation. A canon- 

ical hydrodynamic continuation of (R, X) is a conformal embedding ~ of (R, X) 

into a marked compact Riemann surface (/~,)~) of genus g such that a holomor- 

phic differential of special character has a holomorphic extension to R, where 

R is identified with Z(R). He proved that if Z: (R, X) --+ (/~,)() is a canonical 

hydrodynamic continuation, then 7rkk [/~, )(] lies on the boundary of 7rkk (M(R, X)) 

for some k, and vice versa. Here we discuss only canonical hydrodynamic con- 

tinuations corresponding to the bottom point of 7rkk(M(R,x)). For the precise 

definition and more general properties of canonical hydrodynamic continuations, 

see [18] and [19]. 
For each k = 1 , . . . , g  there uniquely exists a holomorphic differential ~k on 

R whose imaginary part is a distinguished harmonic differential in the sense 

of Ahlfors (for the definition, see Ahlfors-Sario [2, V.21D]) and which satisfies 

faj ~k = 5jk for j = 1 , . . . , g .  We call q0k the k- th  canonica l  h o l o m o r p h i c  

d i f fe rent ia l  of (R, X). A conformal mapping Z of (R, X) into a marked compact 

Riemann surface (/~,)~) of the same genus is called a canonica l  h y d r o d y n a m i c  

c o n t i n u a t i o n  of (R, X) with respect to qok if 

(2.1) the area of/~ \ ~(R) vanishes, 

(2.2) the pull-back of qok via ~-1: ~'(R) -~ R extends to a holomorphic differential 

~3k on/~, and 

(2.3) every connected component o f /~  \ ~(R) containing more than one point 

consists of finitely many analytic arcs along which Im ~k = 0 (and possibly 

zeros of ~hk). 
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Canonical hydrodynamic continuations are characterized by the following ex- 

tremal property: 

PROPOSITION 2.3: Let [it, y(] �9 M(R, X) and let ~: (R, X) --+ (it, y() be a confor- 
mal embedding. Then ~ is a canonical hydrodynamic continuation with respect 
to the k-th canonical holomorphic differential of (R, X) if and only if 7rkk [/~, )~] 

has the smallest imaginary part in 7rkk(M(R, X)): 

(2.4) Im ~rkk [/~, )~] = rain Im lrkk (M(R, X)). 

The following proposition is an immediate consequence of Proposition 2.3 and 

condition (2.1). 

PROPOSITION 2.4: Let JR, y(] be a point of M(R, X). If(2.4) holds, then R \ ~(R) 
has a vanishing area for any conformal mapping ~ of ( R, X) into ( R, ~l). 

There may be infinitely many points [/~,)~] �9 M(R, )t) which satisfy (2.4). 

In other words we cannot assert the uniqueness of a canonical hydrodynamic 

continuation with respect to the k-th canonical holomorphic differential ~k on 

(R, X). In view of condition (2.2) we see that ~k has at most 2 g -  2 zeros in R. If 

it has 2 g -  2 zeros in R, then the uniqueness assertion holds in the sense that there 

is exactly one [/~, ~] �9 M(R, )l) satisfying (2.4) and that (R, X) is conformally 

embedded into (/~,)~) uniquely up to conformal automorphisms of (/~,)~). 

3. Holomorphic mappings and conformal mappings 

In the present section we consider holomorphic mappings of a marked noncompact 

Riemann surface (R, X) of positive finite genus g into marked compact Riemann 
surfaces of the same genus. Let 93t(R, X) denote the set of [/~, )~] E Tg such that 
there is a holomorphic mapping of (R, X) into (/~,)~) which is homotopic to a 

homeomorphism of (R, X) into (/~,)~). Obviously, we have 

M(R, X) C ~ ( R ,  X). 

We investigate whether M(R, X) coincides with ffYl(R, X) or not. First of all we 

remark the following 

PROPOSITION 3.1: If  R is obtained from a compact Riemann surface by deleting 
a discrete set, then M(R, X) = ~ ( R ,  X) whenever g > 1. 

Proof: Let /~ be the compact Riemann surface from which R is obtained. If 

IS, 5] is a point of fill(R, X) and ] is a holomorphic mapping of (R, X) into (S, 5), 
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then by Huber [5, Satz 2 in w (see also Marden-Richards-Rodin [9, Theorem 1]) 

we know that  / is extended to a holomorphic mapping of ~ into S. Since these 

Riemann surfaces are compact and have the same genus, the extended holomor- 

phic mapping is indeed a conformal bijection. This implies that 97t(R, X) is a 

singleton, and the proof is complete. II 

The assumption that g > 1 is essential as the following proposition shows: 

PROPOSITION 3.2: If  ( R, X) is a marked noncompact Riemann surface of genus 

one, then 93~(R, X) is identical with the Teichmiiller space T1 of genus one. 

Proof: We proceed as in [11, Proposition 2.2] (see also [17] and the references 

quoted there). Every element of T1 is of the form [C/G~, X~] with T �9 H, where 

G~ is the lattice generated by 1 and ~- and where X~ is composed of the images 

of the oriented segments joining 0 to 1 and to T under the natural projection 

~r~: C -~ C/G~. 

Now, we may assume that (R,x) C (C/G~,x~) for some a �9 H. For each 

T �9 H, by a theorem of Behnke-Stein, there is a holomorphic differential 

on R satisfying that fa ~ -- 1, fb ~ = T, where X = {a, b}. Furthermore, we 

require that  f~ ~ = 0 for any dividing cycles c on R. Then its abelian integral 

~(p) = fv  ~ induces a (single-valued) holomorphic mapping f := 7r~or of (R, X) 

into (C/G~,XT). It is lifted to a holomorphic mapping F of lr~-l(R) into C such 

that F ( z + l )  = F ( z ) §  and F(z+a)  = F(z)+T.  Let A be the affine mapping of 

C onto itself carrying 0, 1, a to 0, 1, ~, respectively. It induces a homeomorphism 

a of R into C/G~.. Since the continuous mapping H: lr~-l(R) • [0, 1] -+ C defined 

by H(z, t) = tF(z) + (1 - t)A(z) gives a homotopy connecting f and a, we know 

that  [C/G~, X~] belongs to 9Y~(R, X). | 

Proposition 3.2 shows in particular that M(R, X) is always a proper subset 

of 93~(R, X) if g = 1. In the case where g > 1, the same thing holds under an 

additional assumption on R (cf. Proposition 3.1). 

THEOREM 3.1: Let (R,x) be a marked noncompact Riemann surface of 

positive finite genus. If R has a border-like boundary component, then 

M(R, X) C ~ ( R ,  X). 

For the proof we prepare a lemma, which will also play an important role in 

the proof of Theorem 1.1. 

LEMMA 3.1: Let ( R, X) be a marked noncompact Riemann surface of positive 

finite genus with a border-like boundary component. Then there is a marked 
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noncompact Riemann surface (R', X') of the same genus together with a homeo- 
morphic bijection h: (R, X) --+ (R', X') such that 

(i) M(R',  X') \ M(R, X) ~ 0, and 
(ii) there is a holomorphic mapping of (R, X) into ( R', X') homotopic to h. 

The proof of Lemma 3.1 is fairly long and we will give it in the next section. 

Here, assuming the validity of Lemma 3.1, we prove Theorem 3.1. 

Proof of Theorem 3.1: Let (R t, X ~) be a marked noncompact Riemann surface 

of the same genus possessing properties (i) and (ii) of Lemma 3.1. We deduce 

from property (ii) that 93~(R', X') C ~rY~(R, X)- Since M(R', X') C ~ ( R ' ,  X'), we 

obtain by property (i) that ~O~( R, X) \ M ( R, Z) ~ 0, as desired. I 

4. P r o o f  o f  L e m m a  3.1 

In this section we give a proof of Lemma 3.1. Let ~: (R, X) -+ (/~,)~) be a canon- 

ical hydrodynamic continuation with respect to the first canonical holomorphic 

differential ~ of (R,x).  Thus [/~,)~] is a point of M ( R , x  ) such that 7r11[/~,)~] has 

the smallest imaginary part in 7rll (M(R, :~)): 

(4.1) Im 71"11 [R,  )~] = min Im 7111(M(R, X)) 

(see Proposition 2.3). Identifying R with ~(R), we may assume from the outset 

that R is a subdomain of/~. Since R has a border-like boundary component, there 

is a connected component C of/~ \ R which is isolated from the other components 

and which contains more than one point. It follows from (2.2) and (2.3) that 

is extended to a holomorphic differential 95 on/~ whose imaginary part vanishes 

along C. 

Let P0 be a point of C that is not a zero of 95. We can find a parametric disk 

U in R around P0 with conformal bijection z: U ~ D, z(po) = 0, such that 

(a) z is analytic and homeomorphic on the closure U of U, 

(b) U- C R U C, that is, U never meets the other components of/~ \ R, 

(c) U contains no zeros of 95, and 

(d) Co := {p E U: [Rez(p)l < 1/2 and Imz(p) = 0} c C. 

We define So --/~ \ Co. More generally, we set Se = / ~  \ Ce for r E (0, ~ - 1), 

where 

Ce = Co U {p E U: [z(p) + i[ _< 1 + c and Imz(p) > 0}. 

Clearly, Se, where 0 < ~ < v ~  - 1, are noncompact Riemann surfaces of genus 

g with exactly one boundary component. We choose a marking ae of Se so that 

(R,x) C (S0,a0) C (/~,:~) and (S~,a~) C (So,co). 
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The latter inclusion relation yields 

(4.2) M(S0, a0) C M(S~, ae). 

Let M,: (S~,ae) ~ (Se,ae) be a canonical hydrodynamic continuation of 

(Se, ae) with respect to the first canonical holomorphic differential ~e of (S e, ae). 

By Proposition 2.3 we have 

(4.3) Im 71"11 [Sr ~e] = rain Im 7r], (M(Se, ae)). 

We first show that ME is extended to a holomorphic mapping of So into Se when- 

ever r is sufficiently small. To this end we examine a branch aP E of the abelian 

integral fv  ~ of ~e in the doubly connected domain De := Sr V1 U = U \ Ce. 

The boundary ODe of De in /~ is composed of the "outer" boundary OU and 

the "inner" boundary OSe. Note that De C Do and Se U Do -- So. Since Te is 

the pull-back of a holomorphic differential ~e on S~ by Me (see (2.2)), the inte- 

gral aPe is the pull-back, via Me, of a branch ~e of the abelian integral of Cz in 

the simply connected domain/ke := Me(De) U (S~ "-Me(Se)). In particular, aPe is 

single-valued in De. Observe that ~0 coincides with the restriction of ~ to So 

since Im ~ vanishes along Co. It follows from (c) that ~0 has 2g - 2 zeros in 

So \ Do. Hence we have 

(4.4) [S0, 50] = [/~, :~1. 

Since ~e converges to ~0 as ~ $ 0 uniformly on each compact subset of So, for 

sufficiently small ~ there are 2g - 2 zeros of ~ in Se \ De (and no zeros in De). 

This implies that Ce has no zeros in /~e. Consequently, ~e is locally univalent 

in A,e. Since Ce is the pull-back of ~e, we know that the behavior of ~e near 

the boundary 0S~ reflects the boundary behavior of Me. Since the imaginary part 

of aPe is constant on OSe, the reflection principle enables us to extend r across 

OS~ n Do to a holomorphic function on Do. This implies that Me is extended to a 

holomorphic mapping of So into Se, which will be denoted by the same symbol 

Me. 
Next we claim that Me(So) is a proper subdomain of Se if r is sufficiently small. 

Since [~ [  attains its maximum on 0 /~ ,  its pull-back laP~[ is bounded by the 

maximum on the "outer" boundary OU of De. If r is normalized to vanish at a 

fixed point q of Do, then aPe converges to aP0 as r $ 0 uniformly on each compact 

subset of Do U OU. We infer that {aPe}e is uniformly bounded. Therefore, again 

with the aid of the reflection principle, we see that aPe ~ aP0 as ~ $ 0 uniformly 

on each compact subset of 

{p E U: Imz(p) >_ 0} \{P0}. 
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Thus, for sufficiently small r > 0, the image of OSe N Do under g k is so small that 

it cannot cover all SE \ ~e(S~). Hence ~ :  So --+ Se is not surjective, as asserted. 

Finally, we fix ~ > 0 such that ~ :  So ~ S~ is not surjective. Let /) be a 

connected component of S~ \ 7)E (So), and set 

Then R' is a noncompact Riemann surface of genus g, and we can choose a 

marking X' of R' so that 

(4.5) (R', X') C (Se, ~ )  

and that there is a homeomorphism h of (R, X) onto (R', X'). We prove that R' 

and h: R --+ R' possess the desired properties. The restriction of ~e to R is a 

holomorphic mapping into R' which is homotopic to h. Thus condition (ii) is 

satisfied. To prove (i) observe that (4.5) implies [SE, ~e] E M(R', X'). If [Se, ~ ]  

belonged to M(R, X), then it would follow from (4.1) that 

(4.6) ImTrll[/~,)~] _< ImZrll[SE,aE]. 

On the other hand, by (4.2) we have [S0,60] E M(S~,ae). Hence, by (4.3) 
and (4.4) we obtain 

(4.7) Im 71-11 [S~, ~e] _< Im 7t"11 [So, Oo] = Im 7ru [/~, )(l, 

and conclude from (4.6) and (4.7) that 

Im 71"11 IS0, O'0] : Im 7rll [S~, ~ ] .  

Thus by virtue of (4.3) we know that IS0, a0] is a point of M(Sc, a~) such that 

rhl[S0,~o] has the smallest imaginary part in the disk 7hl(M(S~,~E)). But the 

restriction of 9o to Se is a conformal mapping of (Se, a~) into (S0, ~0), the com- 

plement of whose image in So is of positive area because So \ S~ is. This violates 

Proposition 2.4, and the proof of the lemma is complete. 

5. Hyperbolic lengths and conformal embeddings 

In this section we give a proof of Theorem 1.1. To this end we establish the 
following theorem, which is interesting in its own right. 
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THEOREM 5.1: Let R be a noncompact Riemann surface of positive finite genus 

with a border-like boundary component. Then there is a noncompact Riemann 

surface R ~ together with a homeomorphic bijection h: R --4 R' such that 

(i) there is a holomorphic mapping of R into R' homotopic to h, but 

(ii) there are no conformal mappings of R into R' homotopic to h. 

Proo~ Fix a marking X of R, and take a marked noncompact Riemann surface 

(R' ,x ' )  and a homeomorphism h: (R,x)  ~ (R' ,x ' )  as in Lemma 3.1. By prop- 

erty (ii) of the lemma there is a holomorphic mapping of R into R' homotopic 

to h. If there were a conformal mapping of R into R' homotopic to h, then it 

would be a conformal mapping of (R, X) into (R', X') so that M(R' ,  X') would be 

a subset of M(R,  X), contradicting property (i) of the lemma. II 

It is now easy to prove Theorem 1.1. 

Proof of Theorem 1.1: Let R' and h be as in Theorem 5.1. Since holomorphic 

mappings decrease hyperbolic lengths, property (i) of Theorem 5.1 implies con- 

dition [H]. On the other hand, condition [C] is false by property (ii) of the same 

theorem. | 

Remark: Theorem 5.1 is no longer true when the genus is zero. Simply con- 

nected Riemann surfaces give simple counterexamples. As a less trivial result we 

refer to [15, Theorem I], where Schiffer proved that the existence of a holomor- 

phic mapping of a doubly connected Riemann surface into another homotopic 

to a homeomorphism implies the existence of a conformal embedding homotopic 

to the homeomorphism. Alternative proofs of the theorem of Schiffer can be 

found in Huber [4], [5], Jenkins [6], Landau-Osserman [7], [8]. See also Marden- 

Richards-Rodin [9] and Reich [14]. It is not known whether Theorem 5.1 is true 

or not for planar Riemann surfaces of connectivity three or more. 

In the rest of this section we study the relationship between compact contin- 

uations and hyperbolic lengths. Let (R, X) be a marked noncompact Riemann 

surface of genus g, where 1 < g < c~. For each c E SIR] we define a function 

Lc on the Teichmiiller space Tg as follows. For each [/~, )~] E Tg there is a home- 

omorphism h of (R,x) into (/~,)~), which induces a mapping h.: S[R] -+ S[/~]. 

The homotopy class ~[/~, )~] := tt. (c) depends only on c, for, any homeomorphism 

of (R, X) into (/~,)~) induces the same mapping of SIR] into $[/~]. We then define 

Lc[/~, )~] to be the hyperbolic length of ~[/7/, )~]: 

Lc[R, Y(l = I ~ ( 5[[~, )~]). 
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Now, we denote by ~(R,  X) the set of all [/~, ~] e T 9 such that 

Lc[/~,~] < IR(c) 

for all c C S[R]. 

PROPOSITION 5.1: The set Y}(R, X) is compact. 

Proof: Since Lc is a real analytic function on Tg, we see that Y)(R, X) is closed. 

To show that it is relatively compact, we use the Fenchel-Nielsen coordinate func- 

tions on Tg. These coordinate functions are composed of lengths parameters and 

twist parameters. Observe that Lc =- 0 or Lc > 0 throughout Tg. If Lc > 0, then 

8[/~, ~] contains a unique geodesic loop for any [/~, )~] C Tg. Moreover, it depends 

solely on c whether or not this geodesic loop is simple. Now, if L~ is positive 

and the geodesic loop in 5[/~, )~] is simple, then there exists c' E SIR], depending 

only on c, with L~, > 0 such that the geodesic loop in 5 ~[/~/, ~] transversally inter- 

sects that in 5[/~, )~]. Since L~, is bounded on t)(R, X), it follows from the collar 

theorem (see, for example, Buser [3, Corollary 4.1.2]) that L~ is bounded away 

from zero on Y)(R, X)- Thus each length parameter is bounded above and away 

from zero on Y)(R, X). Furthermore, since the twist parameters are real analytic 

functions of the lengths of certain closed geodesics (cf. [3, Lemma 3.3.14]), they 

are also bounded on Y)(R, X). Thus ~(R, X) is relatively compact in Tg. | 

If [/~, ~] e 9~(R, X), then there is a holomorphie mapping ] of (R, X) into (/~, :~) 

homotopic to a homeomorphic injection h: (R, X) -4 (/~,)~). Then ] induces the 

same mapping of SIR] into S[/~] as ~t does. Since holomorphic mappings decrease 
hyperbolic lengths, we see that [/~, ~] belongs to g)(R, X). We have thus proved 

that 

(5.1)  n(R,x) c sh(n, x). 

The next proposition should be compared with Proposition 3.2. 

PROPOSITION 5.2: The set flit(R, X) is a compact subset of Tg if 1 < g < c~. 

Proof: By Proposition 5.1 and the inclusion relation (5.1) we have only to verify 

that ~Jt(R, X) is closed in Tg. We assume from the outset that (R, X) C (/~0, X0) 

for some JR0, :~0] e Tg. Let {[/~n, Xn]}~=l be a sequence in gJ~(R, X) converging 
to [/~, ~] in Tg. For n = 0, 1, 2 , . . .  there is a Fuchsian group F,~ acting on the 

unit disk D such that /~,~ = D/F,~. We also represent /~/ = D/F with some 

Fuchsian group F. Every homeomorphism h~: (/~0, X0) --4 (/~n, ~ ) ' i s  lifted to a 
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homeomorphism Hn of ]I) onto itself such that lr,~oHn =/t,~c~0, where 7rn: D ~ /~n 

stands for the natural projection. We may assume that {Ha} converges to a 

homeomorphism H: D ~ D with 1roll = /~o~0 locally uniformly on D, where 

~: D --~ /~ is the natural projection and where /t: /~0 -~ /~ is a homeomorphic 

bijection. Let 0n: F0 --+ Fn (resp. 0:F0 --~ F) be the isomorphism defined by 

0n(V) = H~oToH~ 1 (resp. 8(7) -- HoToH -1) for 7 E F0. Then {0n} algebraically 

converges to 8. 
Now, for each n there is a holomorphic mapping/n:  (R,x) -+ (/~n,Xn) homo- 

topic to /tnlR. It is lifted to a holomorphic mapping F,~ of ~ol(R) into D such 

that 7rnoF~ -- ]noTr0 and F~o 7 = 0n(ff)oF~ for 7 �9 P0. We can further require 

that the points Fn(0), n -- 1, 2 , . . . ,  stay in a compact subset of D. Since {Fn} 

is a uniformly bounded sequence of holomorphic functions, it has a subsequence 

converging to a holomorphic function F locally uniformly on ~ot(R).  Clearly, 

F is a holomorphic mapping of ~rol(R) into ~) and satisfies Fo  7 = 0(7)oF for 

7 E F0. For z �9 7rol(R) and t �9 [0, 1], define %a(z,t) to be the point which divides 

the hyperbolic line segment joining g(z)  to H(z) in the ratio t : (1 - t). Then 

%a is a continuous mapping of ~rol(R) • [0, 1] into D such that ~(.  ,0) = F and 

%a(., 1) -- H. Since F and H induce the same isomorphism 0 of F0 onto F, we 

have ~(V(z),t) = 0(V)(cp(z,t)) for all 7 �9 F0, z �9 7rol(R) and t �9 [0, 1] (see the 

proof of Ahlfors [1, Lemma on p. 119]). Thus F induces a holomorphic mapping 

of (R, X) into (/~, ~) homotopic to h, and hence [/~, :~] �9 [F~(R, X), as desired. 
| 

In the above proof, if all fn are injective, then so are Fn and hence F is con- 

formal by Hurwitz's theorem. This implies that (R, X) is conformally embedded 

into (/~, ~). We have thus proved the following 

PROPOSITION 5.3 (Oikawa [13]): The set M ( R , x )  is a compact subset of Tg. 

Now, Theorem 3.1 together with (5.1) yields the following result: 

THEOREM 5.2: Let (R,x)  be a marked noncompact Riemann surface of 

genus g, where 1 < g < c~. If  R has a border-like boundary component, then 

M(R,  X) ~ ~(R,  X). 

Let R be a noncompact Riemann surface of genus g with 1 < g < 00, and let 

/~ be a compact Riemann surface of the same genus. Fix a homeomorphism/t of 

R into/~. If 

[(~] there exists a conformal mapping of R into R which is homotopic to h, 

then 
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[H] < ZR(c) for all c C SIR]. 

Theorem 5.2 shows that condition [t~I] does not necessarily imply condition [C] 

(cf. Theorem 1.1). 

On the other hand, in the case of genus one, we can characterize condition [(~] in 

terms of extremal lengths of weak homology classes. The first weak  h o m o l o g y  

g roup  H ~ ( W )  of a Riemann surface W is, by definition, the quotient group of 

singular 1-cycles on W by the subgroup of dividing cycles. If W is of genus g, 

then H ~ ( W )  is a free abelian group of rank 2g. Also, if W is compact, then 

H~'(W)  coincides with the usual homology group HI(W). Since every element 

c of H ~ ( W )  is a set of finite unions of closed curves on W, we can speak of its 

extremal length Aw(c). 

Now, the homeomorphism h induces an isomorphism h, of H~' (R) onto HI(/~). 

If condition [C] is valid, then 

_<  R(c) for all c �9 HI (R). 

For the converse we have the following theorem (cf. Theorem 1.2): 

THEOREM 5.3: Let R be a noneompact Riemann surface of genus one, and let 

be a compact Riemann surface of the same genus. Fix a homeomorphism h of  

R into R. Then condition [I~] implies condition [C]. 

Proof.' Take a marking X = {a,b} of R and set ~ = h*(x). The Teichmfiller 

space T1 of genus one is identified with the upper half plane H and then M ( R ,  X) 

is a closed disk (or a point) in H (cf. Proposition 2.1). Let "~ be the point of 

H corresponding to [/~, )~]. We are required to prove that condition [1~] implies 

~- �9 M ( R ,  X). 

Let a TM and b TM be the weak homology classes induced by a and b, respectively. 

For each r �9 Q let Ur denote the set of V �9 H for which 

1 q2 
I m - -  > 

r -- T -- AR(pa ~ - qb ~) ' 

where p and q are coprime integers with r = p/q. It then follows from [10, 

Lemmas 1 and 2] that Ur is a horocycle of H based at r and inscribes M ( R , x ) :  

O U r n O M ( R , x ) # O  and U r D M ( R , x ) .  

Note that 

I m - -  
1 q2 
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Therefore, if condition [1~] is valid, then we have "~ C Ur for all r C Q. Since 

U (OUr N OM(R,  X)) 
rEQ 

is dense on the boundary of M ( R ,  X), this implies that  ~ E M ( R ,  X), as required. 
| 
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